Valtava resurssi lähes koskematta. Maapallon uumenissa on mittaamattomasti lämpöä, mutta jo pintaa naarmuttaen ihmiskunta voisi saada käyttöönsä yli tuhat kertaa enemmän energiaa kuin tarvitsee.



Julkaistu Tiede-lehdessä 9/2008

Massachusettsin teknisen korkeakoulun MIT:n johtama asiantuntijapaneeli on arvioinut, että pelkästään Yhdysvalloissa kannattaa rakentaa vuoteen 2050 mennessä sata gigawattia geotermistä sähkötehoa. Se tarkoittaisi sataa tuhannen megawatin voimalaa, mikä vastaa yli 60:tä Olkiluoto 3:n kokoista yksikköä. Geovoimalat tuottaisivat 5-10 prosenttia maan sähköstä.

Myös Ranskassa, Sveitsissä, Saksassa ja muualla Keski-Euroopassa sekä Australiassa on käynnissä suuria hankkeita geotermisen energian hyödyntämiseksi.

Jo oli aikakin, voi joku sanoa. Miksi kaivaa fossiilia ja polttaa sitä, kun voi nostaa ylös valmista lämpöä ja höyryä? Viime vuosisadalla syntyikin uusi käsite: lämmön louhinta (heat mining).


Allamme helvetillisesti lämpöä

Noin 99 prosenttia maapallon tilavuudesta on kiinteää tai sulaa kiveä, jonka lämpötila on tuhat astetta tai enemmän. Lopusta yhdestä prosentistakin valtaosa on vähintään sata-asteista kiveä.

Kävelemme kuuman kivimeren päällä. Lämpö on säilynyt maankuoren alla varhaisilta geologisilta kausilta. Lisääkin syntyy radioaktiivisen hajoamisen tuloksena. Meidän allamme toimii lukematon määrä pieniä atomiparistoja.

Jo maankuoren uloimmassa 20 kilometrin graniittikerroksessa on niin paljon radioaktiivisia aineita - uraanin, toriumin ja kaliumin isotooppeja - että ne tuottavat hajotessaan enemmän energiaa kuin ihmiskunta tällä hetkellä kuluttaa.

Käsitykset maapallon syvyyksien lämpömääristä vaihtelevat, mutta pienimpienkin arvioiden mukaan geoterminen lämpö riittää kattamaan ihmiskunnan kaikki energiatarpeet tuhansiksi vuosiksi eteenpäin.

MIT:n paneeli arvioi, että yksinomaan Yhdysvalloissa voidaan saada käyttöön 200 000 eksajoulea eli 56 miljoonaa terawattituntia eli 2 000 kertaa maan nykyinen kulutus. Määrä voidaan tekniikan parantuessa kymmenkertaistaa.
Islantilaisten geolämpötutkijoiden Valgardur Stefánssonin ja Ingvar Fridleifssonin mukaan potentiaaliset lämpövarat ovat koko maailmassa noin kolminkertaiset: 600 000 eksajoulea eli miltei 170 miljoonaa terawattituntia. Se on yli tuhat kertaa enemmän kuin vuotuinen energiankulutus. Silti raavimme vasta pintaa. Vielä paljon enemmän, miljoonia eksajouleja, löytyy, kun joskus päästään sulaan kiveen eli magmaan asti.


Kaikki alkoi Larderellon höyryistä

Mikä parasta, tekniikkaa kuumien syvyyksien energian hyödyntämiseksi on ollut olemassa ja käytössä jo yli sata vuotta.

Kuumissa lähteissä on kylvetty paljon pitempäänkin, mutta teollisen geotermisen voiman tarina alkoi 1800-luvun alkupuolella Larderellon kaupungissa Keski-Italiassa.

Tarkkaan ottaen silloin ei vielä ollut kaupunkia, mutta alueella toimi ranskalainen teollisuuspatruuna François de Larderel. Hän erotti vulkaanisesta mudasta boorihappoa höyryn avulla.

Höyry tuotettiin aluksi polttamalla halkoja, mutta pian metsät kävivät vähiin. Larderel katseli ympärilleen ja huomasi, että maasta nousee valmista höyryä. Hän alkoi valmistaa boorihappoa geotermisellä energialla. Larderelin kunniaksi paikkakunta nimettiin Larderelloksi.

Jos maasta saadaan lämpöä, niin mikä estäisi tuottamasta sähköäkin. Italialainen prinssi Gionori Conti rakensi 1904 koelaitoksen Larderelloon. Hänen höyryvoimalansa tuotti virtaa muutamaan sähkölamppuun. Kaupallinen, 250 kilowatin voimala käynnistyi 1913.

Halvan öljyn aikana geoterminen energia oli eksoottinen kummajainen, mutta 1958 käynnistettiin sentään toinen voimala, Wairakeissa Uudessa-Seelannissa. Sitten voimaloita nousi ympäri maailman: Yhdysvaltoihin, Japaniin, Venäjälle, Islantiin.

Nykyään sähköä tuotetaan geotermisesti 24 maassa. Vuonna 2005 tuotanto oli yhteensä noin 57 terawattituntia. Luku on noin kolme promillea maailman sähköntuotannosta.


Lämpö pitää erottaa kalliosta

Halvan öljyn aikana geoterminen lämpö ei juuri kiinnostanut. Vieläkin maailma elää enimmäkseen vanhoissa ajoissa, mutta tutkijat alkoivat jo 1970-luvulla miettiä, miten tuottaa geotermistä energiaa suuressa mitassa.

Nykyiset geotermiset voimalat toimivat poikkeuksellisissa paikoissa, joissa kuuma vesi virtaa maan pinnalle. Muualla lämpöä nousee vähän. Kallioperä eristää tehokkaasti.

Lämpövuo maankuoren läpi pintaan on keskimäärin 0,06 wattia neliömetriä kohti.  Luku on todella pieni. Aurinko paistaa keskimäärin 1 000 watin teholla neliölle, eli tuo energiaa 16 000-17 000 kertaa enemmän.

Entä sitten, kysyivät tutkijat. Harvassa paikassa öljykään itsestään nousee maasta, mutta kun porataan reikä, kuiva kallio voi muuttua rikkauksien lähteeksi.

Lämmön louhinnalla ja öljyn poraamisella on siis yhtäläisyyksiä, mutta on myös tärkeitä eroja. Lämpö on erotettava kuivasta kalliosta ja kuljetettava ylös veden avulla. Vesi on siis saatava kiertämään kallion kautta.

Siksi porataan vähintään kaksi reikää sopivaan, tavallisesti muutaman kilometrin syvyyteen, jossa lämpötila on 150-200 astetta. Putkien väliseltä alueelta murennetaan kiveä paineistetulla vedellä, räjäyttämällä tai kemikaaleilla. Näin muodostuu huokoinen, riittävän hyvin vettä läpäisevä kerrostuma.

Toista reikää myöten syötetään sitten alas vettä. Se virtaa rikotun, huokoisen kallion läpi, kuumenee ja nousee ylös toista reikää myöten. Vesi höyrystyy ja käyttää turbiinia samoin kuin perinteisissä höyryvoimaloissa.


Tekogeysirejä testataan

Keinotekoisesta kuumasta lähteestä käytetään nimitystä Enhanced Geothermal System (EGS). Käytössä on myös käsite Hot Dry Rock (HDR). Suomeksi voitaisiin puhua vaikka kuuman kallion tekniikasta.

Tekniikkaa on kehitetty parikymmentä vuotta. Ensimmäisen EGS- tai HDR-koelaitoksen rakensivat yhdysvaltalaiset tutkijat New Mexicon osavaltioon 1970-luvun lopulla. Britit seurasivat esimerkkiä ja rakensivat oman koekenttänsä Cornwalliin.

Myöhemmin kokeita on tehty Japanissa, Ranskassa, Australiassa, Sveitsissä, Saksassa ja Ruotsissa. Soulzissa Koillis-Ranskassa on meneillään usean Euroopan maan yhteinen hanke, jossa testataan HDR-tekniikkaa. Kaupunkiin on tarkoitus rakentaa kuuden megawatin voimala, joka saa energiansa viiden kilometrin syvyydestä.

Koevoimalat ovat vielä varsin pieniä, ja uudesta tekniikasta pitää saada myös kannattavaa. Kansainvälinen asiantuntijaryhmä arvioi kuitenkin hallitustenvälisen ilmastonmuutospaneelin IPCC:n kokouksessa viime helmikuussa, että lähitulevaisuudessa on taloudellisesti mahdollista tuottaa noin kahdeksan prosenttia maailman sähköstä geotermisesti.


Laitos toimii tasaisesti

Geotermisen energian paljous on hyvä syy porata lämpöreikiä maahan. Toinen syy on energian laatu.

Aurinko-, tuuli- ja vesivoiman teho vaihtelee jyrkästi, mutta geotermistä energiaa virtaa tasaisesti ympäri vuorokauden ja kaikkina vuodenaikoina. Tasaisuutta mitataan käyttöasteella, joka kertoo, kuinka suurta osaa kapasiteetista kyetään vuoden mittaan käyttämään. Jos laitos toimisi koko ajan nimellisteholla, käyttöaste olisi sata prosenttia.

Maailman energianeuvoston World Energy Councilin tilasto vuodelta 2005 kertoo, että geotermisten voimaloiden käyttöaste oli 73 prosenttia, tuulivoiman 21 ja aurinkoenergian 14.

Parhaat geotermiset voimalat yltävät 90 prosenttiin eli hyvien ydinvoimaloiden tasolle.


Suomessa kivi on kylmää

Kuuman kallion tekniikka mahdollistaa geotermisen energian hyödyntämisen laajoilla alueilla, mutta ei kaikkialla. Kiven täytyy olla tarpeeksi kuumaa ja lisäksi riittävän huokoista, jotta vesi pystyy kuljettamaan lämmön pinnalle. Suomessa näin ei ikävä kyllä ole.

Suomen kallioperässä lämpövuo on Geologisen tutkimuskeskuksen tekemien mittausten mukaan keskimäärin 37 milliwattia neliömetriä kohti, kun mantereilla keskiarvo on noin 65 milliwattia neliöltä. Kuumimmilla alueilla lämpövuo nousee yli kolmensadan milliwatin.

Suomen kallioperä myös läpäisee heikosti vettä. Huokoisuus on alle yhden prosentin. Senkään vuoksi kuuman kiven tekniikka ei vaikuta täällä kovin lupaavalta.

Otollisimpia kuuman kiven tekniikalle ovat luonnollisesti vulkaaniset alueet, mutta esimerkiksi Etelä-Australiassa sijaitsevaan Innaminckaan on ensi talvena valmistumassa voimala, jonka alla on radioaktiivisuuden lämmittämää graniittia.


Syvemmälle pitäisi päästä

Toistaiseksi olemme puhuneet vain kovan kallioperän pintakerroksen energian hyödyntämisestä. Lähimmät vuosikymmenet geoterminen tekniikka joutuu edelleen raapimaan pintaa.

Seuraaviakin askelia on kyllä mietitty. Nyt reikiä porataan 2-3 kilometrin syvyyteen, joskus harvoin 5-6 kilometriin asti. Suurimmillaankin syvyys on vain noin tuhannesosa maapallon säteestä.

Nykyinen poraustekniikka on omaksuttu öljyn ja kaasun tuotannosta, mutta kun reikien syvyyttä halutaan kasvattaa ja kustannuksia pienentää, tarvitaan uudenlaiset porat.

Tutkijat puhuvat kumouksellisista porausmenetelmistä, joita etenkin New Mexicossa toimiva Sandian kansallinen laboratorio on kehittänyt.

On ideoitu poria, jotka ampuvat teräskuulia kuin konekivääri luoteja. On kehitetty poria, jotka leikkaavat kiveä liekkisuihkulla. Yksi 1900-luvun haaveista, suuritehoinen laserpora, saattaa toteutua meidän vuosisadallamme. Porausta voidaan tehostaa myös kemiallisesti, syövyttämällä kiveä suolahapolla tai muilla hapoilla.


Magmaan vielä pitkä matka

Vielä kaukaisemmassa tulevaisuudessa hyödynnetään magman energiaa.

Yhdysvaltalaistutkijat kokeilivat jo 1970- ja 1980-luvulla Kilauean laavajärvellä Havaijissa sulan kiven "poraamista" vesisuihkun avulla. Höyrystyvä vesi jäähdyttää magmaa tehokkaasti niin, että porana toimiva putki pysyy ehjänä. Jäähdytyksessä syntynyt höyry nousee putken ulkoseinää myöten pinnalle ja pyörittää turbiinia.

Venäläinen astrofyysikko Nikolai Kardašev luokitteli 1960-luvulla maailmankaikkeuden mahdolliset sivilisaatiot energian käytön mukaan. Ensimmäisen luokan sivilisaatio pystyy käyttämään planeettansa kaikkia energiavaroja. Yhdysvaltalainen fyysikko Michio Kaku ennusti myöhemmin, että ehkä kahdensadan vuoden päästä ihmiskunta saavuttaa ykköstason. Nyt taaperramme vielä nollaluokassa.


Kalevi Rantanen on diplomi-insinööri, tietokirjoittaja ja Tiede-lehden vakituinen avustaja.


Geotermisiä käsitteitä


- Geoterminen energia on maapallon sisästä tulevaa energiaa, joka aiheutuu kiven radioaktiivisuudesta, maapallon sisuksen jäähtymisestä tai vulkanismista.

- Maalämpö on maan pintakerrokseen (tai veteen) imeytynyttä auringon energiaa.

- Hydroterminen energia on kuumien lähteiden energiaa.

- HDR, Hot Dry Rock on kuuma kallio.

- EGS, Enhanced (tai Engineered) Geothermal System on keinotekoinen kuuma lähde.


Kimpassa pumppaamaan


Kalevi Rantanen



Maan pintakerros varastoi auringon energiaa. Maalaistalojen perunakellareissa aurinkomaalämpöä on hyödynnetty iät ajat. Hyvässä kellarissa lämpötila säilyy plussan puolella kovillakin pakkasilla. Kesällä kellari on sopivan viileä.

Sama idea sopii asuntojen ilmastointiin ja lämmitykseen. Kun raitis ilma ohjataan maaputkiston kautta ilmanvaihtokoneeseen, se lämpenee talvella ja jäähtyy kesäkuumalla, ja energiaa säästyy.

Sisälämpötilaa pystytään nostamaan lämpöpumpun avulla. Lämpöpumppu toimii periaatteessa samalla tavoin kuin jääkaappi, mutta kylmällä ilmalla siinä otetaan hyötykäyttöön maahan varastoitunutta lämpöä.


Ruotsi voittaa kirkkaasti

Suomen lämpöpumppuyhdistys Sulpun tilaston mukaan meidän maassamme tuotettiin 2006 noin 2,5 terawattituntia lämpöä maalämpöpumpuilla. Sähköä pumput kuluttivat noin 0,8 terawattituntia. Nettona lämpöä saatiin siis noin 1,7 terawattituntia. Määrä on 0,4 prosenttia kaikesta Suomessa tuotetusta energiasta.

Luvuista näkyy suoraan, että maalämpö pienentää lämmityskustannuksia nimenomaan sähkölämmitystaloissa. Suomessa on nyt noin 700 000 sähkölämmitystaloa. Maalämpöpumppuja on vajaat 40 000.

Tekniikkaa on, tarvitsee vain panna vauhtia sen käyttöön. Ruotsi näyttää mallia: Lahden takana pyörii 300 000 maalämpöpumppua. Vuosittain asennetaan 40 000 lisää eli enemmän kuin Suomen koko pumppukanta.

- Helposti hyödynnettäviä maalämpövaroja on vielä 10-15 terawattituntia, sanoo Sulpun toiminnanjohtaja Petri Koivula. Viisitoista terawattituntia olisi jo nelisen prosenttia Suomen koko energiankulutuksesta ja yli viidennes lämmitysenergian kulutuksesta.


Yhteishanke kannattaa

- Maalämpöpumput ovat nopein ratkaisu, kun halutaan toteuttaa tavoitteet uusiutuvan energian käytön lisäämiseksi ja hiilidioksidipäästöjen vähentämiseksi vuoteen 2020 mennessä, Koivula muistuttaa. 

Löytyy myös selvä paikka, missä ne ovat kaikkein kilpailukykyisimpiä. - Lämpöpumppu tulee edulliseksi korjattaessa vanhoja taloja, esimerkiksi pienkerrostaloja, Koivula sanoo.

Korjattavaa riittää, sillä asuntokanta uusiutuu hitaasti, noin sadassa vuodessa. Energiataloudellinen rakentaminen on siksi pääasiassa korjausrakentamista.

Maalämpöpumppu on kannattavin isoissa taloissa ja pientaloryhmissä, joissa lämpökuormaa on tarpeeksi ja noin 20 000 euron investointi jakautuu usealle.  Niinpä talonrakentaja Finndomo, joka on VTT:n kanssa suunnitellut nollaenergiataloa, ehdottaa muutaman talon yhteistä lämpöpumppuverkostoa.

Samaan tapaan kuin maan voidaan hyödyntää veden energiaa. Vaasan asuntomessualueelle on rakennettu meren pohjaan putkisto, joka tuo energiaa 44 pientalolle.



 

Ulkoilu lapsena voi ehkäistä likinäköisyyttä. Silmä näet kaipaa luonnonvaloa.

Likinäköisyys lisääntyy hurjasti kehittyneissä maissa ja varsinkin Aasiassa, kertoo Helsingin Sanomat jutussaan.

Vuosisadan puolivälissä maailman ihmisistä joka toinen on likinäköinen ja voimakkaasti likinäköisiä on liki miljardi, arvioidaan laajassa katsauksessa Ophtalmology-tiedelehdessä.

Soulissa ja Singaporessa jo nyt yli 90 prosenttia kaksikymmentävuotiaista tarvitsee silmälasit. Länsi-Euroopassa arviolta joka toinen nuori aikuinen on likinäköinen.

Likinäköisyys vaikuttaa modernin elämäntavan vaivalta. Perimä selittää sitä vain osin.

Lukeminen ja jatkuva lähityöskentely lisäävät nykyisen käsityksen mukaan likitaitteisuutta, kuten myös sisällä oleskelu ja valon vähäisyys.

”Varhain aloitetun koulunkäynnin on todettu selvästi lisäävän likinäköisyyttä. Siihen ei ole kiinnitetty huomiota, kun suunnitellaan koulutuksen varhentamista”, sanoo vuosikymmeniä asiaa tutkinut silmälääkäri ja Jyväskylän yliopiston dosentti Olavi Pärssinen.

Likinäköisyyttä lisäävät etenkin Aasian vaurailla alueilla kova pänttääminen jo lapsena sekä älylaitteisiin liimautuminen.

Ulkoilu lapsena sen sijaan näyttää ehkäisevän likinäköisyyttä. Niin sanotuen valoteorian mukaan ulkoilun hyöty seuraa siitä, että oleskellaan paljon luonnonvalossa.

Valoteoriaa tukee kansainvälinen tuore tutkimuskatsaus likinäköisyyden geneettisestä taustasta. Likinäköön nimittäin liittyvät erityisesti geenimuutokset soluissa, jotka vastaavat valon havaitsemisesta ja käsittelystä.

Kysely

Luitko itsesi likinäköiseksi?

Yksiköt löytyivät monikäyttöisistä käsistä.

Muinaisaikojen metsästäjille ja kalastajille riitti, että yhteinen saalis jaettiin silmämääräisesti asianmukaisiin osiin. Tarpeen tullen mittana voitiin käyttää puusta tai tuohesta valmistettua lapiomaista kouraa. Tärkeitä mittavälineitä olivat omat kädet.

Peukalo tarkoitti myös peukalon leveyttä eli ruotsalaisittain tuumaa, neljästä muusta sormesta muodostui kämmenen leveys. Kun kämmenet pantiin rinnakkain, syntyi kahmalo. Kyynärpään ja keskisormen pään välinen etäisyys oli kyynärä. Kun kädet levitettiin sivulle suoriksi, matka keskisormien päiden välillä oli syli eli kolme kyynärää, nykymitoissa vajaat kaksi metriä.

Kansainväliset mitat ja painot ovat tulleet tarpeellisiksi viimeistään silloin, kun on alettu käydä kauppaa. Yleisenä ongelmana oli kuitenkin pitkään se, että eri tuotteita mitattiin erilaisilla järjestelmillä ja samannimisetkin mitat olivat käytännössä paikallisia ja keskenään erisuuruisia.

Valtaosa Euroopan maista alkoi siirtyä yhtenäiseen desimaali- ja metrijärjestelmään vasta 1800-luvun jälkipuoliskolla, jolloin Kansainvälinen mitta- ja painotoimisto valmisti jokaiselle valtiolle mallimetrin ja kilogramman. Perusyksikön nimitys metri tuli ranskan mittaa tarkoittavasta sanasta mètre, koska järjestelmäkin oli kehitetty Ranskassa 1700-luvun lopulla.

Jotkin vanhat mitat ovat säilyneet nykypäiviin asti erikoiskäytössä. Perunoita myydään torilla kapoittain, joka nykyään vastaa viittä litraa. Kappa on vanha germaaninen laina, joka merkitsee al­kuaan mittaa.

Halkomittana tunnettu motti on lainaa ruotsin sanasta mått. Ruotsista lainattu pienen rasian nimitys aski on täsmentynyt 20 savuketta sisältävän pakkauksen nimitykseksi.

Kannu on vanha vetomitta, jonka nimi tulee ruotsin sanasta kanna. Kannu oli kaksi tuoppia eli reilut kaksi ja puoli litraa. Tuoppi on tarkoittanut sekä juoma-astiaa että siihen mahtuvan nesteen määrää. Se on lainattu keskiajalla joko ruotsista tai alasaksasta. Entisajan tuoppi veti reilun litran, nykyään nimitetään isoksi tuopiksi puolen litran olutannosta.

Omaperäinen töttö on vanhastaan ollut tuohitorven nimitys, joka kuvailee tuohitorvesta lähtevää ääntä. Putken tai suppilon muotoisia töttöjä tai tötteröitä on myöhemmin alettu kääriä paperista esimerkiksi makeisten kääreiksi. Samaan joukkoon kuuluvat myös vohvelista valmistetut jäätelötötteröt.

Kaisa Häkkinen on suomen kielen emeritaprofessori Turun yliopistossa.

Julkaistu Tiede-lehdessä 9/2018