Kuva: Wikimedia Commons

Epäilty on syytön, kunnes toisin todistetaan. Rokote on tehoton, kunnes toisin todistetaan. Kolikko on reilu, kunnes toisin todistetaan. Joulupukkia ei ole, kunnes toisin todistetaan. Usko on väärä, kunnes toisin todistetaan.

Syyttömyysolettama kiteyttää myös tieteen lähtöoletuksen: mitään uutta ei tapahdu missään. Tuomarina toimii todistusaineisto, joka kumoaa tai säilyttää tämän lähtöoletuksen eli nollahypoteesin, kuten tilastomatemaatikot sitä nimittävät.

Tieteellisen päättelyn vastakohta on somepäättely. Somepäättelyssä omat uskomukset ovat tosia ja toisten uskomukset vääriä, vaikka toisin todistetaan. 

Aineiston todistusvoiman määrää se, kuinka epätodennäköiseltä aineisto näyttää syyttömyysolettaman valossa. Haluaisimme tietenkin tietää syyllisen, mutta on helpompi määrittää aineiston epätodennäköisyys kuin syyllisyyden todennäköisyys. Haluaisimme tietää totuuden, mutta todisteiden epätodennäköisyys on helpompi laskea. Se mikä päättelyn mutkikkuudessa hävitään, laskennan helppoudessa voitetaan.

DNA-todisteet, videotallenne, motiivi, savuava ase ja seikkaperäinen tunnustus ovat syyttömyysolettaman valossa hyvin epätodennäköisiä. Ne riittävät kumoamaan syyttömyysolettaman, eli todistavat syyllisyyden, vaikka eivät suoraan kerrokaan sitä mitä eniten haluamme eli syyllisyyden todennäköisyyttä.

Rokkotautien kukistaminen tekee rokotteiden tehottomuusoletuksen epäuskottavaksi. Siispä päättelemme, että rokotteet tehoavat.

Sata peräkkäistä klaavaa tekee kolikon reiluusoletuksen epäuskottavaksi. Siispä päättelemme, että kolikko ei ole reilu.

Tieteessä aineiston todistusvoimaa mittaa p-arvo: mitä pienempi p-arvo, sitä epäuskottavammalta syyttömyysolettama eli nollahypoteesi vaikuttaa. Jos p-arvo = 1/1000, täytyy ostaa keskimäärin tuhat arpaa saadakseen yhtä poikkeuksellisen tuloksen tai yhtä raskauttavat todisteet sattumalta. Vaikka p-arvo on nimenomaan aineiston todennäköisyys (syyttömyysolettamalla), se kertoo siis epäsuorasti myös syyllisyydestä tai syyttömyydestä. Ykköstä lähellä olevat, yli 1/10 p-arvot, eivät horjuta syyttömyysolettamaa tai nollahypoteesia, koska sen suuruisia arvoja syntyy tuon tuostakin silkasta sattumasta kuin yksi oikein -lottorivejä. Tarkkaan ottaen p-arvo on vähintään käsillä olevan aineiston vahvuisten todisteiden todennäköisyys syntyä sattumalta eli sillä oletuksella, että syytetty on syytön, rokote tehoton tai kolikko reilu. Eli vähintään havaitun vahvuisen signaalin todennäköisyys kohinassa: p-arvo = P(signaali|kohina), joka ei kuitenkaan ole kohinan, sattuman tai syyttömyyden todennäköisyys koska ehdollinen todennäköisyys ei ole vaihdannainen.

Määrite vähintään on ratkaisevan tärkeä p-arvon määritelmässä. Selvitetään sen merkitystä tarkastelemalla lähtöoletusta, että tyttöjä ja poikia esiintyy yhtä paljon jossain tutkimuksen kohteena olevassa populaatiossa.

Olkoon aineistonamme populaatiosta kymmenen satunnaisesti arvottua lasta, joista kahdeksan on poikia ja kaksi tyttöjä. Mikä todennäköisyys kuvastaa tämän näytön vahvuutta syyttömyysolettamaa eli sukupuolten tasajakaumaoletusta vastaan?

Kahdeksan pojan todennäköisyys P(8 poikaa kymmenestä lapsesta) on noin 4%, jos molempia sukupuolia esiintyisi yhtä paljon. Tällainen sattuma esiintyy harvemmin kuin kerran kahdestakymmenestä. Havaitun kahdeksan pojan pieni todennäköisyys ei kuitenkaan vielä riitä kumoamaan sukupuolten tasajakaumaoletusta, sillä epätodennäköisyyslaskennassa täytyy laskea mukaan myös kaikkien muiden vähintään yhtä äärimmäisten tai raskauttavien todisteiden todennäköisyydet. Toisin sanoen mukaan on laskettava myös todisteita, joita ei ole edes olemassa!

Vaikka todistusaineistossamme on vain kahdeksan poikaa, todistusaineiston epätodennäköisyyttä mittaavaan p-arvoon lasketaan siis myös yhdeksän ja kymmenen pojan todennäköisyydet. Lisäksi on laskettava kahdeksan, yhdeksän ja kymmenen tytön eli kahden, yhden ja nollan pojan todennäköisyydet, koska nekin ovat sukupuolen tasajakaumaoletuksen näkökulmasta vähintään yhtä äärimmäisiä tuloksia kuin havaittu kahdeksan pojan aineisto.

Oikea p-arvo saadaan siis laskemalla yhteen p-arvo = P(8 poikaa) + P(9 poikaa) + P(10 poikaa) + P(2 poikaa) + P(1 poika) + P(0 poikaa) = 11%, eli huomattavasti enemmän kuin pelkkä kahdeksan pojan todennäköisyys 4%.

Kahdeksan poikaa ei siis olekaan kovin epätodennäköinen aineisto, sillä kerran yhdeksästä saadaan vähintään yhtä äärimmäinen poikkeama tasajakaumasta puhtaasti sattumalta. Ei edes kolme oikein -lottorivin veroinen tulos.

Kuviteltujen todisteiden huomioinen kasvattaa syyttömyysoletuksen todennäköisyyttä, eli raskauttavammat lisätodisteet toimivatkin syytetyn eduksi!

Vakuuttavatko kuvitellut todisteet lakimiehet ja tuomarit? Tuntuuko niiden huomioiminen sinusta suorastaan väärältä? Et ole ainoa, mutta asian hahmottamista helpottaa vielä toisen aineiston tarkastelu.

Olkoon toisena aineistonamme tuhat satunnaisesti arvottua lasta, joista tasan 500 on poikia ja loput 500 tyttöjä. Mikä todennäköisyys nyt kuvastaa tämän näytön vahvuutta syyttömyysolettamaa eli sukupuolten tasajakaumaoletusta vastaan?

Jos ensimmäisen aineiston tapauksessa oikea vastaus olisi ollut havaitun kahdeksan pojan todennäköisyys, niin samalla logiikalla oikean vastauksen tulisi tässä olla havaitun 500 pojan todennäköisyys P(500 poikaa tuhannesta lapsesta) joka on vain 2.5%. Tällainen sattuma esiintyy vain kerran neljästäkymmenestä, jonka perusteella tasajakaumaoletus näyttää hyvin epäuskottavalta. Mutta aineistossahan on täsmälleen yhtä monta poikaa ja tyttöä, joten mitään näyttöä tasajakaumaoletusta vastaan ei edes ole!

Ristiriita poistuu, kun huomioidaan p-arvon määritelmä vähintään yhtä äärimmäinen aineisto: 500 pojan aineistossa ei ole äärimmäisyyttä alkuunkaan, koska tulos ei poikkea tasajakaumasta lainkaan. Niinpä vähintään yhtä äärimmäisiä kuin 500 poikaa ovat kaikki mahdolliset tulokset nollasta tuhanteen poikaan, joiden yhteistodennäköisyys on tietenkin tasan 100% eli p-arvo on täsmälleen 1! Tämä esimerkki vakuuttaa toivottavasti maallikkotuomaritkin siitä, että myös kuvitteelliset todisteet on huomioitava oikeudessa ja tieteessä.

Tieteellinen päättely on epätodennäköisyyslaskentaa. Se tuntuu epäintuitiiviselta, koska päättelyssä on ylimääräinen mutka joka saa aivotkin helposti solmuun. Kun solmun avaa huolellisesti jokaisen tulkinnan kohdalla, epäintuitiivisesta tulee järkeenkäypää.

Kommentit (4)

Lauri Raittio
5/4 | 

Todennäköisyysteorian mahdollistama tilastollinen päättely toimii tosi hienosti niin kauan kuin pysytään noppien, kolikkojen ja pöytäkorttien laskemisessa.

Suurimmassa osassa empiiristä tutkimusta on valtavasti erilaisia systemaattisia harhoja jotka vinouttavat aineistoa siten, ettei nollahypoteesi pidä (juuri) koskaan paikkaansa jos aineisto on riittävän suuri, Systemaattisten harhojen vuoksi havaittu tulos eroaa nollahypoteesista vaikka se olisikin totta.

Nollahypoteesin testaaminen vastaa kysymykseen: kuinka todennäköistä on havaita aineisto jos nollahypoteesi on totta. Mielenkiintoisempi kysymys on puolestaan kuinka todennäköisesti vaihtoehtoinen hypoteesi on totta. Siihen tarvitsisi vaihtoehtoisen hypoteesin ennakkotodennäköisyyden. 

Teppo Mattsson
Liittynyt13.1.2014
Viestejä143
6/4 | 

Tärkeä huomio. Efektikoon luottamusvälin tarkastelu on oleellinen osa tilastollista päättelyä, mistä voisi vaikka julkaista oman kirjoituksen.

Sisältö jatkuu mainoksen alla
Sisältö jatkuu mainoksen alla
Seuraa 

Rajankäyntiä

Teppo Mattsson on kosmologiaan ja suhteellisuusteoriaan erikoistunut teoreettisen fysiikan tutkija, joka harrastaa matkailua tieteenalojen välisillä rajaseuduilla. Blogi on matkakertomus näiltä retkiltä.

Teemat

Hae blogista

Blogiarkisto

Kategoriat