Seuraa 
Viestejä7
Liittynyt27.2.2018

Eli seuraavanlainen tehtävänanto,

Paineilmasäiliön kyljessä on halkaisijaltaan 5 mm reikä. Säiliössä on 6 bar paine. Miten suuri tilavuusvirta tulee ko. reijästä ulos säiliöstä? Ilman lämpötila on 30 celsiusta.

Sivut

Kommentit (33)

InssiOpiskelija
Seuraa 
Viestejä7
Liittynyt27.2.2018

Eli voisinko saada tähän jotain apuja?

En oikein edes tiedä, mistä lähtisi liikkeelle...

Jotain toki laskeskelin, eli 30 asteisen ilman tiheys on 6, 8996 kg / m^3

Ulosvuotoreijän pinta-ala, 0,0000196349m^2 

 Paine-ero on siis 600000-101300, eli 498700 Pa.

o_turunen
Seuraa 
Viestejä14400
Liittynyt16.3.2005

Melko hyvä likiarvo on, että kaasun nopeus reiässä on äänen nopeus, jos painesuhde on suurempi kuin 2. Tuosta voi arvioida massavirran ja tilavuusvirran reiässä.

Korant: Oikea fysiikka on oikeampaa kuin sinun klassinen mekaniikkasi. Jos olet eri mieltä kanssani olet ilman muuta väärässä.

MooM
Seuraa 
Viestejä7194
Liittynyt29.6.2012

"MooM": Luultavasti entinen "Mummo", vahvimpien arvelujen mukaan entinen päätoimittaja, jota kolleega hesarista kuvasi "Kovan luokan feministi ja käheä äänikin". https://www.tiede.fi/keskustelu/4000675/ketju/hyvastit_ja_arvioita_nimim...

o_turunen
Seuraa 
Viestejä14400
Liittynyt16.3.2005

InssiOpiskelija kirjoitti:
Jotain tuommoista itsekin kaavailin, mutta sillä ei pääse lähellekään sitä, mikä on ilmoitettu oikeaksi vastaukseksi, eli 0,022 m^3 / s.

Tältä sivustolta löysin jonkun linkin, missä noita on taulukoitu.

Siitä pääsee lähes oikeaan tulokseen, mutta miten tuo sitten lasketaan..

Taulukko tässä.. <https://www.duncanrogers.com/tools/air-discharge.asp>[/quote]

Varmaan kannattaa selvittää se, mitä tilavuusvirralla takoitetaan kyseisessä tapauksessa, kun paine ja lämpötila ja ilman tiheys systeemin eri osissa on erilainen. Massavirta on paljon yksikäsitteisempi.

Korant: Oikea fysiikka on oikeampaa kuin sinun klassinen mekaniikkasi. Jos olet eri mieltä kanssani olet ilman muuta väärässä.

PPo
Seuraa 
Viestejä13407
Liittynyt10.12.2008

InssiOpiskelija kirjoitti:
Eli seuraavanlainen tehtävänanto,

Paineilmasäiliön kyljessä on halkaisijaltaan 5 mm reikä. Säiliössä on 6 bar paine. Miten suuri tilavuusvirta tulee ko. reijästä ulos säiliöstä? Ilman lämpötila on 30 celsiusta.

Ilman tiheys on tehtävän lämpötilassa 303/293*1,293 kg/m^3

Jos olisin inssiopiskelija, lähtisin Bernoullin yhtälöstä—>∆p=1/2*rhoo*v^2—>v—>tilavuusvirta vA=0,017559...=0,018 m^3/s.

Aika lähelle antamaasi vastausta. 

InssiOpiskelija
Seuraa 
Viestejä7
Liittynyt27.2.2018

Ilmeisesti tehtävänanto on ollut epätarkka jo tässä harjoitustehtävässä, tai en ole osannut ilmaista itseäni oikein. 

Laitan tähän vielä tuon tehtävänannon tarkemmin, vaikka tuskin se muuttaa asiaa. 

Paineilmasäiliön kyljessä on kierrereikä M6 (poraus halkaisija 5,0mm), säiliössä on 6 bar paine.  Kuinka suuri tilavuusvirta tulee ko. reiästä ulos säiliöstä? ( Oletetaan ilman lämpötilaksi 30 astetta celsiusta.) Vastaus on 0,022m^3 /s. 

Jos tästä laskee ilman tiheyden säiliössä, niin eiköhän se ole 600000 / (287 x 303), siis 6,8996446683 kg / m^3. Tämä siis 6 bar paineessa ja 30 asteen lämpötilassa.

Aukon pinta-ala on kait 0,0000196349m^2.

Paine-ero siis oletettavasti 600000-101300=498700 

Jos tästä arvioi äänennopeudeksi 30 asteen lämpötilassa on noin 348,138 m / s.

Tästä saisi o_turusen vihjeen mukaan 

Q:n arvoksi 348,138x 0,0000196349, noin 0,0068356548 m^3 / s

Paine-erosta laskemalla saisi taas näin, 

Q= A ((2x498700) / 6,8996446683 )^0,5= 0,0074653472 m^3 / s.

Näistä kumpikaan ei kyllä ole ainakaan lähellä sitä vastausta, mikä lapussa oli.

Missä nuo edelliset menevät väärin...?

Diam
Seuraa 
Viestejä2485
Liittynyt14.9.2006

Helpointa on soveltaa Boylen lakia, missä p1V1 = vakio = p2V2.

Alkutilanteessa p=6 bar, josta virtausnopeus reiässä saadaan Bernoullin lain mukaan, qv=vxA ....

Mies kysyi kaiulta: Ostanko Nuhvin vai Majorin? ja kaiku vastasi: VAI MAJORIN!

PPo
Seuraa 
Viestejä13407
Liittynyt10.12.2008

InssiOpiskelija kirjoitti:
Ilmeisesti tehtävänanto on ollut epätarkka jo tässä harjoitustehtävässä, tai en ole osannut ilmaista itseäni oikein. 

Laitan tähän vielä tuon tehtävänannon tarkemmin, vaikka tuskin se muuttaa asiaa. 

Paineilmasäiliön kyljessä on kierrereikä M6 (poraus halkaisija 5,0mm), säiliössä on 6 bar paine.  Kuinka suuri tilavuusvirta tulee ko. reiästä ulos säiliöstä? ( Oletetaan ilman lämpötilaksi 30 astetta celsiusta.) Vastaus on 0,022m^3 /s. 

Jos tästä laskee ilman tiheyden säiliössä, niin eiköhän se ole 600000 / (287 x 303), siis 6,8996446683 kg / m^3. Tämä siis 6 bar paineessa ja 30 asteen lämpötilassa.

Aukon pinta-ala on kait 0,0000196349m^2.

Paine-ero siis oletettavasti 600000-101300=498700 

Jos tästä arvioi äänennopeudeksi 30 asteen lämpötilassa on noin 348,138 m / s.

Tästä saisi o_turusen vihjeen mukaan 

Q:n arvoksi 348,138x 0,0000196349, noin 0,0068356548 m^3 / s

Paine-erosta laskemalla saisi taas näin, 

Q= A ((2x498700) / 6,8996446683 )^0,5= 0,0074653472 m^3 / s.

Näistä kumpikaan ei kyllä ole ainakaan lähellä sitä vastausta, mikä lapussa oli.

Missä nuo edelliset menevät väärin...?

Eiköhän sen purkautuvan ilman tiheys ole lähempänä ulkoilman tiheyttä.

Saamani vastaus 0,018 m^3/s on aika lähellä antamaasi vastausta 0,022 m^3/s 

PPo
Seuraa 
Viestejä13407
Liittynyt10.12.2008

o_turunen kirjoitti:
Tuolta voisi saada jotain vihjettä:

https://en.wikipedia.org/wiki/De_Laval_nozzle

Suuttimen kurkussa nopeus M = 1.

Riippuu sitten reiän ominaisuuksista ja muodosta, kuinka lähelle päästään äänen nopeutta.

Laskin linkin kaavasta purkautumisnopeuden.

T=303,R=8,31, M=0,0290, gamma=1,4—>v=493m/s—>vA=0,0097 m^3/s

Jos oikea tulos on 0,022 m^3/s, niin Bernoullin yhtälöllä saatu tulos 0,018 m^3/s on lähempänä oikeaa.

o_turunen
Seuraa 
Viestejä14400
Liittynyt16.3.2005

PPo kirjoitti:
InssiOpiskelija kirjoitti:
Ilmeisesti tehtävänanto on ollut epätarkka jo tässä harjoitustehtävässä, tai en ole osannut ilmaista itseäni oikein. 

Laitan tähän vielä tuon tehtävänannon tarkemmin, vaikka tuskin se muuttaa asiaa. 

Paineilmasäiliön kyljessä on kierrereikä M6 (poraus halkaisija 5,0mm), säiliössä on 6 bar paine.  Kuinka suuri tilavuusvirta tulee ko. reiästä ulos säiliöstä? ( Oletetaan ilman lämpötilaksi 30 astetta celsiusta.) Vastaus on 0,022m^3 /s. 

Jos tästä laskee ilman tiheyden säiliössä, niin eiköhän se ole 600000 / (287 x 303), siis 6,8996446683 kg / m^3. Tämä siis 6 bar paineessa ja 30 asteen lämpötilassa.

Aukon pinta-ala on kait 0,0000196349m^2.

Paine-ero siis oletettavasti 600000-101300=498700 

Jos tästä arvioi äänennopeudeksi 30 asteen lämpötilassa on noin 348,138 m / s.

Tästä saisi o_turusen vihjeen mukaan 

Q:n arvoksi 348,138x 0,0000196349, noin 0,0068356548 m^3 / s

Paine-erosta laskemalla saisi taas näin, 

Q= A ((2x498700) / 6,8996446683 )^0,5= 0,0074653472 m^3 / s.

Näistä kumpikaan ei kyllä ole ainakaan lähellä sitä vastausta, mikä lapussa oli.

Missä nuo edelliset menevät väärin...?

Eiköhän sen purkautuvan ilman tiheys ole lähempänä ulkoilman tiheyttä.

Saamani vastaus 0,018 m^3/s on aika lähellä antamaasi vastausta 0,022 m^3/s 

Missä kohdassa tuollaisessa suuttimessa on ilman tiheys lähellä ulkoilman tiheyttä?

Korant: Oikea fysiikka on oikeampaa kuin sinun klassinen mekaniikkasi. Jos olet eri mieltä kanssani olet ilman muuta väärässä.

Vierailija

Jos eu uo viskositeettia annettunna niin suattas olla Bernoullin periaatteesta käsin lähdettävä laskemaan tuota noin nii.

Sivut

Suosituimmat

Uusimmat

Uusimmat

Suosituimmat